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Abstract

Background

Complement activation contributes to lung dysfunction in coronavirus disease 2019

(COVID-19). We assessed whether C5 blockade with eculizumab could improve disease

outcome.

Methods

In this single-centre, academic, unblinded study two 900 mg eculizumab doses were added-

on standard therapy in ten COVID-19 patients admitted from February 2020 to April 2020

and receiving Continuous-Positive-Airway-Pressure (CPAP) ventilator support from�24

hours. We compared their outcomes with those of 65 contemporary similar controls. Primary

outcome was respiratory rate at one week of ventilator support. Secondary outcomes

included the combined endpoint of mortality and discharge with chronic complications.

Results

Baseline characteristics of eculizumab-treated patients and controls were similar. At base-

line, sC5b-9 levels, ex vivo C5b-9 and thrombi deposition were increased. Ex vivo tests nor-

malised in eculizumab-treated patients, but not in controls. In eculizumab-treated patients

respiratory rate decreased from 26.8±7.3 breaths/min at baseline to 20.3±3.8 and 18.0±4.8

breaths/min at one and two weeks, respectively (p<0.05 for both), but did not change in con-

trols. Between-group changes differed significantly at both time-points (p<0.01). Changes in
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respiratory rate correlated with concomitant changes in ex vivo C5b-9 deposits at one (rs =

0.706, p = 0.010) and two (rs = 0.751, p = 0.032) weeks. Over a median (IQR) period of 47.0

(14.0–121.0) days, four eculizumab-treated patients died or had chronic complications ver-

sus 52 controls [HRCrude (95% CI): 0.26 (0.09–0.72), p = 0.010]. Between-group difference

was significant even after adjustment for age, sex and baseline serum creatinine [HRAdjusted

(95% CI): 0.30 (0.10–0.84), p = 0.023]. Six patients and 13 controls were discharged without

complications [HRCrude (95% CI): 2.88 (1.08–7.70), p = 0.035]. Eculizumab was tolerated

well. The main study limitations were the relatively small sample size and the non-rando-

mised design.

Conclusions

In patients with severe COVID-19, eculizumab safely improved respiratory dysfunction and

decreased the combined endpoint of mortality and discharge with chronic complications.

Findings need confirmation in randomised controlled trials.

Introduction

As observed in other experimental and human forms of coronavirus lung infection [1,2], dra-

matic respiratory dysfunction [3] and dismal outcomes [4] of Severe-Acute-Respiratory-Syn-

drome Coronavirus-2 (SARS-CoV-2) 2019, or COVID-19 [3,5], are largely mediated by

overwhelming release of pro-inflammatory cytokines (cytokine storm) [6] and uncontrolled

complement activation [7,8]. Endothelial injury and microangiopathic lesions similar to those

observed in the hemolytic uremic syndrome (HUS) [9,10] and deposits of C5b-9 in lung and

skin vessels [10], as well as in glomeruli and tubuli [11] of patients dying of COVID-19 con-

firm that complement activation, in particular of the terminal pathway, may have a key patho-

genic role in COVID-19 [12].

Eculizumab is a humanised anti-C5 monoclonal antibody approved for the treatment of

paroxysmal nocturnal hemoglobinuria and atypical HUS [13,14]. FDA approved a program of

eculizumab off-label compassionate use for the treatment of non-intubated patients with

COVID-19. Initial case series and explorative studies showed encouraging effects of C5 block-

ade in patients with COVID-19 [15–17], even in combination with the JAK1/2 inhibitor ruxo-

litinib [16]. Based on this background we planned to add two 900 mg eculizumab doses on

best supportive therapy in ten patients with COVID-19 who required Continuous-Positive-

Airway-Pressure (CPAP) ventilator support and compared their outcomes with outcomes of

similar contemporary controls who received the same supportive therapy, but no eculizumab.

Materials and methods

Study population

We included adults admitted at the Azienda-Socio-Sanitaria-Territoriale (ASST) Papa Gio-

vanni XXIII in Bergamo (Italy) because of severe COVID-19 who were receiving CPAP venti-

lator support from 24 hours or less. Diagnosis was based on WHO Interim guidance criteria

[18], and confirmed by detection at admission of SARS-CoV-2 genome from nasal swabs and

respiratory samples by using two different molecular methods (GeneFinder COVID-19-Eli-

tech Group, Allplex™ 2019-nCoV Assay—Seegene Inc) according to the manufacturer’s

instructions and WHO protocol (Supplementary Methods in S1 Appendix) [18].
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study, and unrestricted diffusion of such data may

pose a potential threat of revealing participants’

identities, as permanent data anonymisation was
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local ethics committee.
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Ten consenting participants received compassionate eculizumab treatment along with anti-

Neisseria Meningitis and Pneumococcus antibiotic coverage. The drug was freely supplied by

the manufacturer (Alexion Pharma Italy S.R.L., Milan). No participant received compensation.

Then, when all patients had completed eculizumab therapy, outcomes of eculizumab-treated

patients and contemporary controls were compared retrospectively. The prospective compas-

sionate treatment protocol and the retrospective controlled study were both approved by the

Ethical Committee of Bergamo. The Ethical Committee that approved our retrospective obser-

vational study stated that the informed consent to participate in the study and to use medical

records for research purposes had to be collected whenever the patient could be contacted.

Thus, we collected the written informed consent from those eculizumab-treated patients and

controls who were still alive at the time the study was conducted.

Eculizumab compassionate treatment

Nine-hundreds mg of eculizumab were intravenously infused within 24 hours of CPAP venti-

lator support and seven to ten days thereafter (this flexibility was justified by the emergency

context). The number of patients given eculizumab therapy depended on drug availability,

while the selection of eculizumab recipients was at the discretion of the treating physician and

influenced by logistic reasons. Indeed, to avoid overlaps of drug administrations and specific

laboratory tests to monitor treatment effects in different patients, and prevent possible inter-

ference with clinical patient management, we administered eculizumab to one patient every

six to seven consecutive potential candidates (Supplementary Methods in S1 Appendix). In no

case patients eligible to receive eculizumab objected to the use of their medical data for

research purposes. Nonetheless, patients would still have been eligible to receive eculizumab if

they had objected to the use of their data in medical research. No systematic change in sup-

portive treatment was introduced. Patients involved in ongoing clinical trials were excluded.

Follow-up

All participants were followed up to death or hospital discharge. History, vital signs, clinical,

laboratory and safety parameters and adverse events were recorded in patients’ medical

records.

Blood samples to evaluate a marker of complement activation in plasma (sC5b-9) and ex
vivo serum-induced complement deposition and thrombus formation on ADP-activated

human microvascular endothelial cells (HMEC-1) of dermal origin [19–21] were collected

from all eculizumab-treated patients (before eculizumab administration) and four controls

(“Biochemical Controls”) within 24 hours from CPAP initiation (baseline) along with samples

for genetic analyses. In vivo and ex vivo tests were repeated 1–4 days and 7–16 days after base-

line, respectively, and 30–60 days after discharge (recovery visit). Because of resource restric-

tions, ex vivo thrombi deposition at 7–16 days was not evaluated. Complement and genetic

analyses were freely performed at the Laboratories of the Istituto di Ricerche Farmacologiche

Mario Negri IRCCS in Bergamo (Italy). Other laboratory parameters were evaluated at the

hospital clinical laboratories. All data were recorded in the same dedicated database (further

details in Study Protocol in S2 Appendix).

Complement evaluation and genotyping

SC5b-9 levels were evaluated in plasma EDTA by MicroVue SC5b-9 Plus EIA (SC5b-9 Plus;

Quidel). Ex-vivo serum-induced C5b-9 deposits and thrombus formation on HMEC-1 lines

were evaluated as described previously, with minor modifications (Supplementary Methods in

S1 Appendix and S1 Fig) [19–21]. CFH, MCP, CFI, CFB, C3, THBD coding sequences were
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screened by amplicon-based next generation sequencing and H3 CFH haplotype and CFH/

CFHR genomic abnormalities were evaluated as previously described (Supplementary Meth-

ods in S1 Appendix) [22].

Sample size and statistical analyses

We calculated that with the administration of two 900 mg doses per patient, drug supply

would have been sufficient to treat ten patients. Considering that eculizumab would have been

administered to one patient every six to seven potential candidates we predicted that at inclu-

sion of ten eculizumab-treated patients we would have identified a total of 60 to 70 potential

controls. Among potential controls we selected those with the same age-range of eculizumab-

treated patients.

Due to the retrospective and observational nature of the study the sample size was not cal-

culated. Primary outcome was the absolute change in respiratory rate at week one versus base-

line. Secondary short-term outcomes included changes in respiratory rate at two weeks and

changes in arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2), PaO2 to

fractional inspired oxygen (FiO2) ratio (PaO2/FiO2); heart rate, systolic, diastolic and mean

blood pressure; C-Reactive Protein (CRP), D-dimer test, serum creatinine, blood cell count at

one and two weeks after baseline and concomitant changes in complement parameters in a

subgroup. Complement parameters were evaluated also at recovery visits.

The combined endpoint of in-hospital death or discharge with chronic severe complica-

tions was considered as the most clinically relevant long-term outcome. Secondary long-term

outcomes included death during hospitalisation as single endpoint and discharge without

chronic complications. Any serious adverse event was recorded and monitored up to patient

discharge or death.

We analysed continuous variables through descriptive statistics. We reported data as mean

(SD) or median [IQR], within-group changes vs. baseline with paired t-test or Wilcoxon

signed-rank test, and between-group differences by analysis of covariance (ANCOVA) or chi-

square or Fisher’s exact test, as appropriate. Survival analysis was performed by means of Cox

proportional hazard regression models and results were expressed as hazard ratio (HR) and

95% confidence interval (CI). Analyses were adjusted by pre-defined covariates age and sex,

and serum creatinine, the only covariate that, among baseline covariates listed in Table 1, at

explorative univariable analysis significantly associated with all considered long-term out-

Table 1. Patient characteristics at baseline according to treatment group.

Overall (n = 75) Eculizumab (n = 10) Controls (n = 65)
Demographic and clinical characteristics

Age, years 65.5 ± 12.9 60.0 ± 15.1 66.1 ± 12.5

Males, n (%) 56 (75) 7 (70) 49 (75)

Smokers, n (%) 12 (16) 2 (20) 10 (15)

Comorbidities per patient 2 [1–3] 1 [0–2] 2 [1–3]

Patients without comorbidities, n (%) 24 (32) 3 (30) 21 (32)

Hypertension alone, n (%) 10 (13) 1 (10) 9 (14)

Other comorbidities and hypertension, n (%) 27 (36) 1 (10) 26 (40)

Other comorbidities without hypertension, n (%) 14 (19) 5 (50) 9 (14)

Systolic blood pressure,mmHg 131.7 ± 23.3 139.7 ± 37.6 130.4 ± 20.2

Diastolic blood pressure,mmHg 73.7 ± 12.0 77.6 ± 7.0 73.1 ± 12.6

MAP,mmHg 93.1 ± 13.7 98.3 ± 13.5 92.2 ± 13.7

(Continued)
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Table 1. (Continued)

Overall (n = 75) Eculizumab (n = 10) Controls (n = 65)
Heart rate, bpm 82.9 ± 14.0 85.4 ± 12.5 82.5 ±14.3

Respiratory functional parameters

Respiratory rate, breaths/min 26.6 ± 7.4 26.8 ± 7.3 26.6 ± 7.5

PaO2,mmHg 70.5 [59.6–92.0] 80.5 [66.0–90.0] 69.0 [58.0–92.0]

PaCO2,mmHg 32.0 [30.0–37.0] 31.5 [30.0–37.0] 32.0 [29.8–36.5]

PaO2/FiO2,mmHg 125.7 [100.0–183.8] 138.1 [110.0–159.3] 124.3 [97.1–184.0]

FiO2 0.6 [0.5–0.7] 0.6 [0.6–0.6] 0.6 [0.5–0.7]

Arterial pH 7.46 [7.44–7.49] 7.47 [7.44–7.48] 7.46 [7.44–7.50]

Laboratory parameters

White blood cell count, x109/L 8.12 [5.89–12.41] 10.72 [7.54–12.41] 7.94 [5.75–12.26]

Neutrophil count, x109/L 6.10 [4.39–9.58] 8.79 [6.02–11.31] 5.85 [4.08–8.95]

Lymphocyte count, x109/L 0.75 [0.52–1.12] 0.63 [0.44–0.76] 0.79 [0.57–1.14]

Monocyte count, x109/L 0.38 [0.28–0.51] 0.42 [0.32–0.49] 0.37 [0.28–0.55]

Platelet count, x109/L 237.0 [150.0–308.0] 303.5 [230.0–447.0]§ 229.5 [137.0–286.5]

NLR 7.44 [4.83–19.37] 16.88 [7.67–20.08] 6.91 [4.68–12.63]

PLR 264.3 [187.7–514.4] 402.3 [280.3–879.3] § 244.4 [176.2–500.0]

Hemoglobin, g/dL 13.4 [12.1–14.7] 13.7 [12.2–14.7] 13.4 [12.0–14.6]

C-reactive protein,mg/dL 14.4 [9.1–21.9] 15.4 [11.2–22.1] 14.2 [9.1–21.5]

Aspartate aminotransferase, U/L 53.0 [36.0–81.5] 42.0 [35.5–50.5] 56.0 [36.5–84.5]

Alanine aminotransferase, U/L 44.0 [31.0–76.0] 43.5 [29.0–69.0] 44.0 [31.0–76.0]

LDH, U/L 610 ± 301 499 ± 144 626 ± 315

Serum creatinine,mg/dL 0.89 [0.70–1.09] 0.68 [0.60–0.95] 0.90 [0.73–1.09]

Estimated GFR,mL/min# 67.0 ± 23.2 79.7 ± 25.0 65.1 ±22.5

D-dimer, ng/mL� 942 [624–2132] 871 [568–1044] 1002 [624–2360]

IL-6, pg/mL˚ 86.5 [53.2–132.0] 83.6 [25.3–121.9] 87.3 [53.2–132.0]

sC5b-9, ng/mL‡ 1022.0 ± 461.2 1145.1 ± 458.0 612.5 ± 72.5

C5b-9,% increase versus control¥ 276.6 ± 71.7 270.3 ± 69.4 292.3 ± 85.7

Thrombus formation, pixel† 2821.8 ± 1326.7 2881.9 ± 1434.7 2661.7 ± 1242.5

Patients with medications, n (%)
ACE inhibitors or ARB& 26 (35) 0 (0) § 26 (40)

Darunavir/cobicistat 39 (52) 7 (70) 32 (49)

Hydroxychloroquine 51 (68) 9 (90) 42 (65)

Data are numbers (percentages), mean ± SD or median [IQR], as appropriate. Abbreviations: ACE, angiotensin-

converting enzyme; ARB, angiotensin II receptor blockers; FiO2, fraction of inspired oxygen; GFR, glomerular

filtration rate; IL-6, interleukin-6; LDH, lactate dehydrogenase; MAP, mean arterial pressure; NLR, neutrophil-to-

lymphocyte ratio; PaCO2, partial pressure of arterial carbon dioxide; PaO2/FiO2, ratio of partial pressure of arterial

oxygen to fractional inspired oxygen; PLR, platelet-to-lymphocyte ratio. Comorbidities: Hypertension, cancer,

cardiovascular disease, cerebrovascular disease, chronic kidney disease, chronic liver disease, chronic obstructive

pulmonary disease, diabetes mellitus and obesity.
#Estimated through the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

�D-dimer measurement was available in 8 patients of the eculizumab group and in 48 patients of the control group.

˚IL-6 measurement was available in 8 patients of the eculizumab group and in 42 patients of the control group.
‡ sC5b-9 levels were available in 10 patients of the eculizumab group and in 3 patients in the control group.
¥ C5b-9 was available in 10 patients of the eculizumab group and in 4 patients in the control group.

†Thrombus formation was available in 8 patients of the eculizumab group and in 3 patients in the control group.
&In the control group 17 patients were given an ACE inhibitor and nine an ARB.
§P<0.05 versus controls.

https://doi.org/10.1371/journal.pone.0261113.t001
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comes. Cumulative events were constructed using the Kaplan-Meier method. Correlation

analysis was carried out using Pearson’s r or Spearman’s rho correlation coefficient [23]. A fur-

ther exploratory repeated measures correlation analysis was considered using package

‘rmcorr’. No imputation method was used for missing values. Data were analysed by SAS (ver-

sion 9.4), STATA (version 15) and package ‘rmcorr’ (version 0.4.1). Statistically significant dif-

ferences were assumed at 5% level of probability.

Results

From February 2020 to April 2020 we included 75 participants: ten eculizumab-treated

patients and 65 controls. All of them received CPAP ventilator support from 24 hours or less

and standard treatment including low-dose steroid, low-molecular-weight heparin and anti-

microbial prophylaxis with cephtriaxone and azithromycin (which served also as prophylaxis

for Neisseria Meningitis and Pneumococcus infection in eculizumab-treated patients). Most

patients received also hydroxycholoroquine and/or antiviral therapy (darunavir and cobicistat

combination). Tachypnea, hypoxia, hypocapnia, markedly decreased PaO2/FiO2 ratio and

increased FiO2 were consistent with severe respiratory distress at inclusion (Table 1). Other

detailed demographic, clinical and laboratory parameters are reported in Table 1 and Supple-

mentary Methods (S1 Appendix).

Complement activity and ex vivo complement deposition and

thrombogenesis

At baseline, sC5b-9 plasma levels were significantly higher in COVID-19 patients than in 10

contemporary healthy controls and even as compared to levels observed in historical patients

with atypical HUS (Fig 1A). Sera from all the 14 analysed patients induced strong C5b-9 depo-

sition (>149% of a control serum pool) on ADP-activated HMEC-1 (Fig 1B). Pre-exposure to

sera from 11 patients induced massive thrombus formation on ADP-activated HMEC-1 flo-

wed with normal heparinised whole blood added with mepacrine (S1 Fig). C5b-9 and throm-

bus deposition were significantly stronger than those induced by sera from healthy controls

and similar to those induced by sera from historical patients with atypical HUS (Fig 1B

and 1C).

Genotyping

Genetic analysis was done in all eculizumab-treated COVID-19 patients and four COVID-19

controls (“Biochemical Controls”). Next generation sequencing screening revealed only a new

missense heterozygous variant in C3 (c.C1426A, p.L476I) in one of the four COVID-19 con-

trols. This variant has not been reported in patients with atypical HUS or other complement-

related genetic diseases. No functional studies are available and the variant is predicted damag-

ing only by two of 12 in silico tools (CADD 9.844). We classified the p.L476I as variant of

unknown significance. The H3 CFH haplotype, which had been previously associated with the

risk of atypical HUS [24] and with reduced plasma levels of factor H, was identified only in 2

patients (both are heterozygous) with an allele frequency of 0.11, which is not different from

the allele frequency (0.17) that we previously reported in healthy subjects [25].

Copy number variation analysis in the genomic region including CFH and the 5 CFHR

genes revealed the common CFHR3-CFHR1 heterozygous deletion in 6 out of 14 patients (fre-

quency of the deleted allele 0.21 compared to 0.19 in 100 healthy controls, p = 0.6 Fisher’s

exact test). We did not identify any CFH/CFHR hybrid gene or other rare genomic

rearrangements.
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Eculizumab compassionate treatment

One patient received only the first eculizumab dose because he was transferred to another hos-

pital before the second dose could be administered. His data were recorded and analysed as for

the other patients. Baseline characteristics of eculizumab-treated patients were similar to those

of the whole patient population (Table 1).

Eculizumab was well tolerated and no treatment-related adverse event was observed. Eculi-

zumab was associated with a significant reduction in respiratory rate at one and two weeks

that was paralleled by a concomitant increase in arterial PaCO2 and a decrease in mean and

diastolic blood pressure (Table 2). CRP and lactate dehydrogenase serum levels decreased as

well, whereas estimated glomerular filtration rate significantly increased. Other changes are

shown in Table 2.

Plasma sC5b-9 levels significantly decreased after the first eculizumab administration ver-

sus baseline, but mean values persistently exceeded normal range and fully normalised only at

post-discharge recovery visits (Fig 2A). Serum-induced ex-vivo C5b-9 deposition and throm-

bus formation on HMEC-1 significantly and persistently decreased to normal range after ecu-

lizumab administration up to post-discharge recovery visits (Fig 2B and 2C).

Controlled study

Baseline characteristics were similar between eculizumab-treated patients and controls

(Table 1), with the exception of lower platelet count and platelet-to-lymphocyte ratio,

and more frequent use of renin-angiotensin system (RAS) blockers in controls. In the four

“biochemical” controls baseline sC5b-9 plasma levels, ex-vivo serum-induced C5b-9 deposi-

tion and thrombus formation were similarly elevated as in eculizumab-treated patients

(Fig 2A–2C).

Respiratory rate did not change appreciably at one and two weeks of observation vs. base-

line in controls, whereas arterial PaCO2 significantly increased at both time-points. No signifi-

cant changes were observed in heart rate and arterial blood pressure. Changes in other

considered parameters are shown in Table 2. Changes in respiratory rate, PaCO2, mean and

Fig 1. Circulating complement profile and ex-vivo effect of serum on C5b-9 deposition and thrombus formation

on HMEC-1 in COVID-19 patients. (A) SC5b-9 plasma levels in ten healthy subjects (healthy CTRs, negative

controls), in 13 COVID-19 patients evaluated within 24 hour initiation of CPAP ventilator support and in patients

with atypical hemolytic uremic syndrome studied in remission (aHUS, positive controls, n = 30). (B) Effect of serum

from COVID-19 patients on C5b-9 formation on microvascular endothelial cells (HMEC-1). ADP-activated HMEC-1

were incubated for 2 hr with 50% serum, diluted with test medium (HBSS with 0.5% BSA), from healthy subjects

(healthy CTRs, n = 17), or COVID-19 patients evaluated within 24 hour initiation of CPAP ventilator support (n = 14),

or aHUS patients studied in remission (aHUS positive controls, n = 14) or with a pool of sera from healthy controls. At

the end of incubation, cells were washed, fixed, and stained with rabbit anti-human complement C5b-9 complex

antibody followed by FITC-conjugated secondary antibody. An AXIO Image.Z2 laser microscope was used to view the

fluorescent staining on the endothelial cell surface, the HMEC-1 area covered by C5b-9 staining was calculated by

automatic edge detection (Image J software), and values were expressed as the percentage of C5b-9 deposits induced by

a pool of sera run in parallel (control, reference 100%). (C) Effect of serum from COVID-19 patients on thrombus

formation on microvascular endothelial cells (HMEC-1). HMEC-1 were treated with ADP and exposed for 2 h in static

conditions to 50% serum, diluted with test medium, from COVID-19 patients evaluated within 24 hour initiation of

CPAP ventilator support (n = 11), or aHUS patients studied in remission (aHUS positive controls, n = 4) or with a

pool of sera from healthy controls (healthy CTR pool). Perfusion of heparinised whole blood from healthy subjects

(added with mepacrine) was then performed in a thermostatic flow chamber in which one surface of the perfusion

channel was a glass slide seeded with a monolayer of endothelial cells, at a constant flow rate of 1500 sec-1 (60 dynes/

cm2). After 3 min, perfusion was stopped, and the slide with the endothelial cell monolayer was dehydrated and fixed.

A confocal inverted laser microscope was used to view the fluorescent staining on the endothelial cell surface, and the

HMEC-1 area covered by thrombi was calculated by automatic edge detection (Image J software), and values expressed

in pixels2. Data are mean ± SD. One-way Anova test. Abbreviations: CTRs, controls ˚˚˚P<0.0001, ˚˚P<0.01, ˚P<0.05

versus healthy CTRs. ###P<0.0001 versus aHUS.

https://doi.org/10.1371/journal.pone.0261113.g001
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diastolic blood pressure, and median CRP values at one and two weeks (Fig 3A–3D) versus

baseline significantly differed between treatment groups (Table 2). Other changes are shown

in Table 2.

Ex-vivo C5b-9 and thrombus deposition in “biochemical” controls did not change at one

and two weeks vs. baseline and normalised only at recovery visits (Fig 2B and 2C). Thus,

Table 2. Clinical, respiratory and laboratory parameters at baseline and during follow-up according to study group.

Eculizumab (n = 10) Controls (n = 65)
Baseline Week 1 Week 2 Baseline Week 1 Week 2

Clinical parameters

Systolic BP,mmHg 139.7±37.6 129.2±13.1 117.0±11.1# 130.4±20.2 131.6±19.8 128.6±21.5

Diastolic BP,mmHg 77.6±7.0 68.9±9.5�## 65.4±12.2�### 73.1±12.6 72.4±13.1 71.3±11.9

MAP,mmHg 98.3±13.5 89.0±8.5# 82.6±7.7�### 92.2±13.7 92.1±13.6 90.4±13.3

Heart rate, bpm 85.4±12.5 79.1±8.2# 81.2±9.8 82.5±14.3 82.9±14.8 80.9±12.7

Respiratory parameters

Respiratory rate, breaths/min 26.8±7.3 20.3±3.8�## 18.0±4.8�## 26.6±7.5 26.0±7.4 24.3±6.5

PaO2,mmHg 80.5 [66.0–90.0] 78.0 [70.0–89.0] 75.1 [63.0–88.0] 69.0 [58.0–92.0] 69.0 [58.0–90.4] 69.5 [57.0–89.0]

PaCO2,mmHg 31.5 [30.0–37.0] 55.0 [36.5–58.9]�� # 54.7 [38.6–68.4] 32.0 [29.8–36.5] 41.0 [34.0–47.0]��� 40.3 [32.7–48.0]��

PaO2/FiO2,mmHg 138.1 [110.0–159.3] 162.6 [100.0–180.0] 97.6 [75.0–179.3] 124.3 [97.1–184.0] 95.7 [71.4–142.9] 111.1 [90.0–162.9]

FiO2 0.6 [0.6–0.6] 0.6 [0.3–0.8] 0.3 [0.2–0.8] 0.6 [0.5–0.7] 0.7 [0.5–0.8]� 0.6 [0.4–0.7]

Arterial pH 7.47 [7.44–7.48] 7.38 [7.38–7.39] 7.41 [7.36–7.44] 7.46 [7.44–7.50] 7.44 [7.40–7.48] 7.45 [7.41–7.48]

Laboratory parameters

WBC count, x109/L 10.72 [7.54–12.41] 10.65 [8.84–12.80] 8.23 [6.59–12.69] 7.94 [5.75–12.26] 12.15 [7.64–17.16]��� 12.24 [9.96–15.46]���

Neutrophil count, x109/L 8.79 [6.02–11.31] 8.91 [7.50–11.67] 5.50 [4.19–10.12] 5.85 [4.08–8.95] 11.09 [6.84–14.89]��� 10.01 [7.45–12.54]���

Lymphocyte count, x109/L 0.63 [0.44–0.76] 0.76 [0.34–1.02] 1.04 [0.89–1.99]� 0.79 [0.57–1.14] 0.66 [0.45–1.08] 1.32 [0.70–1.95]��

Monocyte count, x109/L 0.42 [0.32–0.49] 0.62 [0.52–0.86]� 0.67 [0.53–0.73]�� 0.37 [0.28–0.55] 0.55 [0.32–0.76]��� 0.80 [0.58–0.93]���

Platelet count, x109/L 303.5 [230.0–447.0]# 306.5 [251.0–378.0] 192.0 [177.0–317.0] 229.5 [137.0–286.5] 244.0 [165.0–333.0] 243.5 [184.0–335�5]

NLR 16.88 [7.67–20.08] 9.51 [8.44–15.46] 5.09 [2.08–16.85] 6.91 [4.68–12.63] 15.74 [9.27–34.50] 6.91 [3.36–14.64]

PLR 402.3 [280.3–879.3] # 322.3 [255.4–561.3] 157.4 [98.9–388.3] 244.4 [176.2–500.0] 367.7 [178.6–545.8] 244.3 [86.3–383.5]

Hemoglobin, g/dL 13.7 [12.2–14.7] 13.3 [11.0–13.7] 11.4 [10.0–13.0]� 13.4 [12.0–14.6] 11.8 [10.9–13.1] ��� 11.3 [9.7–12.4] ���

C-reactive protein,mg/dL 15.4 [11.2–22.1] 1.0 [0.5–1.4]��## 0.8 [0.2–9.5]� 14.2 [9.1–21.5] 5.9 [2.0–15.9]��� 4.2 [0.7–8.4]���

AST, U/L 42..0 [35.5–50.5] 32.5 [21.0–46.0] 27.0 [20.5–46.0] 56.0 [36.5–84.5] 36.0 [26.0–48.0]��� 27.0 [20.0–40.5]���

ALT, U/L 43.5 [29.0–69.0] 86.5 [61.0–111.0] ��# 68.0 [52.0–96.5]� 44.0 [31.0–76.0] 53.0 [34.0–77.0]�� 59.0 [34.0–94.0]��

LDH, U/L 499±144 301±112��� 267±73��� 626±315 446±192��� 388±166��

Serum creatinine,mg/dL 0.68 [0.60–0.95] 0.56 [0.52–0.73] 0.56 [0.49–0.74] 0.90 [0.73–1.09] 0.79 [0.61–1.00]� 0.70 [0.52–0.88]��

Estimated GFR,mL/min 79.7±25.0 90.3±22.1�� 89.9±28.9� 65.1±22.5 71.8±22.8��� 76.8±22.8���

D-dimer, ng/mL 871 [568–1044] 916 [378–2551] 1336 [278–3370] 1002 [624–2360] 3139 [1045–6306]��� 2743 [1072–4008]���

IL-6, pg/mL 83.6 [25.3–121.9] 8.0 [7.6–11.5] 49.2 [38.9–84.3] 87.3 [53.2–132.0] 35.8 [2.0–58.5] 19.9 [2.0–37.8]

sC5b-9, ng/mL‡ 1145.1±458.0 761.5±247.3� 831.5±211.2 612.5±72.5 578.6±144.5 704.8±192.7

C5b-9,% increase vs control¥ 270.3±69.4 78.5±19.0���### 128.8±54.3��### 292.3±85.7 316.5±37.6 322�4±44�1

Thrombus formation, pixel2† 2881.9±1434.7 638.1±251.4��### 2661.7±1242.5 3593.7±1018.3

Data are mean (SD) or median [IQR], as appropriate. Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BP, blood pressure; CRP, C-

reactive protein; GFR, glomerular filtration rate; IL-6, interleukin-6; LDH, lactate dehydrogenase; MAP, mean arterial pressure; NLR, neutrophil-to-lymphocyte ratio;

PaCO2, partial pressure of arterial carbon dioxide; PaO2/FiO2, ratio of partial pressure of arterial oxygen to fractional inspired oxygen; PLR, platelet-to-lymphocyte ratio.
‡ sC5b-9 levels were available in 10 patients of the eculizumab group and in 3 patients in the control group.
¥ C5b-9 was available in 10 patients of the eculizumab group and in 4 patients in the control group.

†Thrombus formation was available in 8 patients of the eculizumab group and in 3 patients in the control group. For complement activity, ex vivo complement

deposition and thrombus formation, Week 1 corresponds to 1–4 days post-CPAP, and Week 2 corresponds to 7–16 days post-CPAP. T-test or Wilcoxon Signed Rank

�p<0.05, ��p<0.01, ���p<0.001 vs baseline, ANCOVA test #p<0.05, ##p<0.01, ###p<0.001 vs controls.

https://doi.org/10.1371/journal.pone.0261113.t002
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Fig 2. Changes in sC5b-9 plasma levels and in ex vivo serum induced C5b-9 and thrombus formation on HMEC-1 lines in

eculizumab-treated patients and “biochemical” controls. SC5b-9 plasma levels (A), ex vivo serum induced C5b-9 (B) and

thrombus formation on HMEC-1 lines (C) at baseline, at 1–4 days and 7–16 days of CPAP ventilator support and at post

discharge recovery visit in eculizumab-treated patients (Black columns) and “biochemical” controls (diagonal stripes),

respectively. Numbers under the columns describe the number of eculizumab—treated patients or controls evaluated at each

time-point. Horizontal dashed lines are the upper and lower limit of normal range (mean±2SD) of each considered parameter.
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follow-up changes in both parameters significantly differed between groups during the first

two weeks of CPAP ventilator support. At recovery visits all considered parameters were in

normal range and similar between groups.

Long-term endpoints. Over a median (IQR) observation period of 47.0 (14.0–121.0)

days, four of the ten eculizumab-treated patients died or were discharged with chronic compli-

cations as compared to 52 of the 65 controls (80.0%) (Fig 4A). Event rate was significantly

lower in eculizumab-treated patients than in controls [HRCrude (95% CI): 0.26 (0.09–0.72),

p = 0.010]. The difference between groups was statistically significant even after adjustment

for age and sex [HRAdjusted (95% CI): 0.29 (0.10–0.84), p = 0.022], and further adjustment for

baseline serum creatinine [HRAdjusted (95% CI): 0.30 (0.10–0.84), p = 0.023]. Causes of death

and chronic complications at discharge are shown in S1 and S2 Tables, respectively.

Two eculizumab-treated patients versus 31 (47.7%) controls died. Mortality rate, however,

did not significantly differ between groups, even after adjustment for age and sex, and further

adjustment for baseline serum creatinine (Fig 4B). Six patients and 13 controls (20.0%) were

discharged without chronic complications. The event rate was significantly higher in eculizu-

mab-treated patients than in controls [HRCrude (95% CI): 2.88 (1.08–7.70), p = 0.035, (Fig

4C)]. Between-group difference approached the nominal significance after adjustment for age

and sex [HRAdjusted (95% CI): 2.92 (0.99–8.67), p = 0.053], but was not significant after adjust-

ment for baseline serum creatinine [HRAdjusted (95% CI): 2.21 (0.71–6.88), p = 0.171].

Other endpoints. During the observation period, 5 (50%) eculizumab-treated patients

and 21 (32.3%) controls required mechanical ventilation (p = 0.301). There were six (9.2%)

cardiovascular events (two cardiogenic shocks, one myocardial infarction, one atrial fibrilla-

tion, one atrioventricular block and one supraventricular tachycardia) and six (9.2%) throm-

boembolic events in controls versus none in eculizumab-treated patients. None of the patients

in either group required renal replacement therapy.

Correlation analyses. At baseline, plasma sC5b-9 levels positively correlated with D-

dimer concentrations (rs = 0.849, p = 0.002) and serum-induced C5b-9 deposits with respira-

tory rate (rs = 0.590, p = 0.026). At one-week follow-up, changes in plasma sC5b-9 levels versus

baseline directly correlated with concomitant changes in D-dimer concentrations (rs = 0.925,

p = 0.001). Changes in serum-induced C5b-9 deposits at one (rs = 0.706, p = 0.010, Fig 3E) and

two (rs = 0.751, p = 0.032, Fig 3F) weeks positively correlated with concomitant changes in

respiratory rate. At baseline, neutrophil-to-lymphocyte ratio (r = 0.675, p = 0.046) and plate-

let-to-lymphocyte ratio (r = 0.807, p = 0.009) directly correlated with thrombus formation.

Changes in neutrophil-to-lymphocyte (r = 0.884, p = 0.046) and platelet-to-lymphocyte

(r = 0.908, p = 0.033) ratios at one week of follow-up positively correlated with concomitant

changes in thrombus formation.

Discussion

In this fully academic, single centre, two-phase study we first found that eculizumab compas-

sionate therapy was safe and well tolerated in ten patients with severe COVID-19 requiring

CPAP ventilator support. No treatment-related adverse event was reported. Respiratory dis-

tress promptly improved, as documented by significant reduction in respiratory rate and con-

comitant increase in PaCO2 at one and two weeks of CPAP ventilator support. Inflammation

Abbreviations: CPAP, Continuous Positive Airway Pressure; Ecul, Eculizumab. Data are mean ± SD. One-way Anova test.,
�P<0.05, ��P<0.01, ���P<0.001 versus baseline; ^^P<0.01 versus recovery; ###P<0.0001 versus “biochemical controls” at the

same time-point.

https://doi.org/10.1371/journal.pone.0261113.g002
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Fig 3. Changes in clinical, respiratory and laboratory parameters in eculizumab-treated patients and all controls, and correlations

between changes in respiratory rate and ex vivo C5b-9 deposition at different time points in eculizumab-treated patients and

“biochemical” controls considered as a whole. Respiratory rate (A), PaCO2 (B), mean arterial pressure (C) and C-reactive protein

plasma levels (D) at baseline and at 1–4 days and 7–16 days of CPAP ventilator support in eculizumab-treated patients (black circles and

black continuous line) and in controls (white circles and grey dashed line). Data are mean ± SEM or median. Correlations between

changes in serum-induced C5b-9 deposits at 1 week (E) and 2 weeks (F) of CPAP ventilator support and concomitant changes in

respiratory rate in eculizumab-treated patients (black circles) and controls (white circles) considered as a whole. Number of patients, rs

and p values for each correlation are shown in the two panels. Abbreviations: CRP, C-reactive protein; MAP, mean arterial pressure; RR,

respiratory rate. �P<0.05, ��P<0.01, ���P<0.001 versus baseline. #P<0.05, ##P<0.01 versus controls.

https://doi.org/10.1371/journal.pone.0261113.g003
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Fig 4. Kaplan-Meier curves for the combined endpoint of mortality or discharge with chronic complications, and for mortality as a single

endpoint and discharge without chronic complications in eculizumab-treated patients and controls. Kaplan-Meier curves show the

proportion of eculizumab-treated patients and controls who reached the combined endpoint of mortality or discharge with disabling chronic

complications (A), mortality as a single endpoint (B) or discharge without chronic complications (C) during the observation period. Hazard

ratios (HRs) and 95% confidence intervals are crude and adjusted for sex and age classes (model 1), or for sex, age classes and baseline serum

creatinine (model 2). The number of patients at risk is shown in the bottom table. Black continuous line, eculizumab group; grey dashed line,

control group.

https://doi.org/10.1371/journal.pone.0261113.g004
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also improved as demonstrated by reduction in CRP levels at the same time points. Con-

versely, in the second controlled phase we found that in controls respiratory rate, PaCO2 and

CRP levels did not change appreciably at one and two weeks of follow-up. Finding that at one

and two weeks changes in these parameters significantly differed between groups confirmed

that eculizumab remarkably and promptly improved respiratory distress and inflammation

during the acute phase of the disease versus standard therapy alone.

Over a median observation period of 47 days, eculizumab-treated patients were also signifi-

cantly protected against the combined endpoint of in-hospital death or discharge with invali-

dating chronic sequelae, including residual respiratory insufficiency in most cases. Moreover

eculizumab associated with increased probability of discharge without chronic complications

and a trend to better survival rate versus controls. Treatment effect on the combined endpoint

was significant even after adjustment for age, sex and baseline serum creatinine. On the other

hand, treatment effect on mortality rate considered as a single endpoint failed to reach the

nominal significance most likely because of the too small number of events. Eculizumab ther-

apy also reduced arterial blood pressure versus controls. Whether this effect was explained by

reduced sympathetic tone associated with amelioration of respiratory distress and/or by

blunted complement-mediated arteriolar vasoconstriction remains elusive [26].

Study findings were unlikely confounded by differences in the distribution of risk factors or

in patient’s care because at inclusion patients’ characteristics were quite similar between

groups, and all patients were followed by the same “COVID teams” during the same observa-

tion period and were managed according to the same standardised monitoring and treatment

protocols. Findings were not confounded by concomitant experimental treatments because

patients included in clinical trials were not considered. The more frequent use of RAS blockers

in controls should not have confounded the results because these medications do not appear

to affect disease progression and case-fatality in COVID-19 [27].

The sub-study in the ten eculizumab-treated patients and four “biochemical” controls

showed a marked increase in plasma sC5b-9 levels along with extremely activated ex vivo com-

plement and thrombus deposition on human cultured endothelial cells induced by patients’

sera. SC5b-9 plasma levels decreased and ex-vivo C5b-9 and thrombus deposition fully nor-

malised with eculizumab, and all parameters in eculizumab-treated patients normalised at

recovery visits. In controls, plasma sC5b-9 levels and ex vivo C5b-9 and thrombus deposition

did not appreciably change at one to four and seven to 16 days of follow-up versus baseline

and normalised only at recovery visit. Between-group differences in ex vivo C5b-9 formation

at the same time points and in thrombus deposition at one to four days were highly significant.

Thus, eculizumab fully blunted ex vivo complement deposition and thrombogenesis induced

by patients’ SARS-CoV-2 infected sera. These data suggest that in COVID-19, disease severity

could be sustained by extreme activation of the complement terminal pathway, both in the cir-

culation and on the endothelial cell surface [19,20]. Benefits of C5 blockade could be mediated

by prompt and effective systemic complement inhibition and protection from complement

deposition and thrombus formation on endothelial cell surface during the acute phase of the

disease. Consistently, respiratory rate positively correlated with ex vivo C5b-9 formation on

endothelial cells at inclusion and its reduction at one to four days and seven to 16 days of fol-

low up correlated with concomitant reductions in ex vivo C5b-9 formation.

In healthy subjects, complement modulates pro- and anti-inflammatory functions and facil-

itates the clearance of pathogens and apoptotic cells [28]. This modulatory function is dis-

rupted by SARS-CoV-2 that triggers uncontrolled cleavage of the terminal complement

protein C5 with consequent excess production of the proinflammatory anaphylatoxin C5a and

of the terminal complement complex C5b-9. These changes activate endothelial and phago-

cytic cells and sustain production of reactive oxygen species [7]. The C5b-9 complex may also
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directly injure endothelial and alveolar cells [29] with consequent disruption of the lung tissue.

C5a and C5b-9 may also have pro-thrombotic effects by acting on endothelium, neutrophils

and platelets [12,29,30]. Thus, C5 blockade by eculizumab might also serve to prevent the

thromboembolic complications of COVID-19 [9]. These effects are achieved without affecting

upstream immune-modulatory and immune-protective functions of the complement cascade

[28], which might explain—along with antimicrobial prophylaxis against gram-positive encap-

sulated bacteria—why in our patients eculizumab treatment was not associated with excess

risk of infectious complications. However, the risk of infection with Klebsiella pneumonie

despite antimicrobial prophylaxis during C5-blocking therapy [31] should be taken into con-

sideration because this gram-negative encapsulated bacterium often produces large spectrum

beta-lactamases that can inactivate antibiotics commonly recommended to prevent meningo-

coccal infection upon exposure to eculizumab [32]. The findings are not affected by doses of

heparin or low molecular weight heparin that are used in clinics to prevent or treat pulmonary

thromboembolism [21,33].

At variance with previous scanty reports [34], none of our patient disclosed signs of throm-

botic microangiopathy. Lack of predisposing genetic abnormalities in the complement system

could explain these findings and even suggests that SARS-CoV-2 infection is per se sufficient

to induce complement activation and precipitate thrombo-embolic complications indepen-

dent of host genetic predisposition [35].

Major study limitations were the relatively small number of patients receiving eculizumab

therapy and the non-randomised and unblinded design. Major strengths were the controlled

design and the integrated evaluation of potential mediators of the disease, markers of respira-

tory distress and long-term hard endpoints. All considered outcomes were pre-specified and

data assessors were blinded to treatment. Treatment assignment was based on predefined

guidelines, which limited the risk of investigator bias in the allocation to treatment groups.

When we designed our study, few early doses of eculizumab had been reported to inhibit com-

plement activation in severe cases of Shiga-toxin associated HUS [36]. With this background

we administered only two 900 mg doses of eculizumab one week apart at acute onset of severe

COVID-19. We found that this treatment protocol was safe and effective in our patients.

Recent data suggest that intensified treatment compared to that indicated for atypical HUS

appeared to improve outcomes of patients with COVID-19, but was associated with excess

infectious complications in particular of life-threatening ventilator-associated pneumonia

[15]. However, assessing whether higher eculizumab doses, shorter intervals between drug

administrations or longer treatment periods would have been more effective, or rather less

safe, was beyond our purposes. We did not measure the degree of circulating C5 blockade by

eculizumab through CH50 or similar assays. However finding that ex vivo serum-induced

C5b-9 deposition on HMEC-1 fully normalised in COVID-19 patients after eculizumab,

would support an effective degree of C5 inhibition as we previously documented in patients

with aHUS [20].

In conclusion, our findings–that need confirmation in a prospective randomised clinical

trial—suggest that adding only two 900 mg doses of eculizumab to standard therapy in patients

with severe COVID-19 who were receiving CPAP support for 24 hours or less, can safely

improve respiratory dysfunction and decrease the combined endpoint of long-term mortality

and chronic complications. These findings may have major implications, since effective com-

plement C5 blockade restricted to the early acute phase of the disease could have better risk/

benefit profiles than standard or intensified treatement protocols. Optimised cost/effectiveness

could also facilitate patients’ access to compassionate treatment with this expensive medica-

tion, particularly in resource-restricted settings.
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